

وزارة التربية منطقة الجمراء التعليمية مدرسة خالد بن سعيد الثانوية

التوجيه الفني للرياضيات

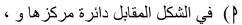
نماذج اختبارات <u>غير</u> محلولة لطلاب الصف العاشر

العام الدراسي ١٨ ٩/٢٠١٠

رئيس القسم: د. ماجد الفضلي

الموجه الفني: أحمد العتيبي

إعداد: أحمد عبد الكريم المطاوع



امتحان نهاية االفصل الدراسي الثاني – المجال الدراسي: الرياضيات الصف العاشر العام الدراسي ٢٠١٨ / ٢٠١٩ م

الزمن : (ساعتان ونصف)

القسم الأول: القسم المقال (أجب عن جميع الأسئلة موضحاً خطوات الحل)

السؤال الأول:

١) أثبت أن: ود⊥بج

۲) إذا كان ق
$$(4\hat{\mathbf{p}} \leftarrow)= \mathbf{v}^{\circ}$$
 فأوجد ق $(4\hat{\mathbf{c}} \rightarrow)$

الحل:

$$(+)$$
 بدون استخدام الآلة الحاسبة إذا كان جا $\theta = -\frac{1}{6}$ ، جتا $\theta > 0$ ، أوجد جتا θ ، ظتا θ ، قا θ الحل :

السؤال الثاني:

الحل:

(-) حل المعادلة المثلثية + حتاس - + الحل:

	الثالث	, 11	السي
•	البالب	/ 11	السبه
•		<u> </u>	

(٦،٤) أو جد معادلة المماس للدائرة :
$$(m-7)^7 + (m-1)^7 = 7$$
 في النقطة $(3،8)$ الحل :

ب) إذا كان
$$\{1, \dots, \infty\}$$
 ب حدثان في فضاء العينة ف ل $\{1, \dots, \infty\}$ ب $\{1, \dots, \infty\}$ ب $\{1, \dots, \infty\}$ أوجد : $\{1, \dots, \infty\}$ ب $\{1, \dots, \infty\}$ الحل :

		11	*	. 11
٠	2	111	7 1	السؤا
٠.	$\overline{}$	<u></u>	<u> </u>	

م) أوجد التباين و الانحراف المعياري لقيم البيانات التالية:

Y, £, 7, A, V, 9

الحل:

(ب) أوجد بُعد النقطة هـ (١،٢) عن المستقيم ل : ص =٣س ٤

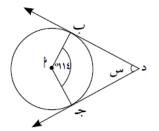
وضوعية	- البنود الم	الثاني ـ	القسم

- (۱) إذا كانت العبارة صحيحة (اذا كانت العبارة خاطئة
- أولاً: في البنود (٢،١) عبارات ظلل في ورقة الإجابة

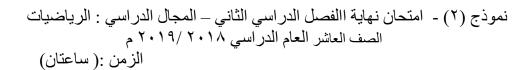
١) ميل المستقيم الذي يوازي محور الصادات يساوي صفر

 ٢) عدد الطرق المختلفة لانتخاب مدير ونائب مدير وسكرتير من مجموعة فيها ٦ أشخاص يساوي ٢٠

ثانياً: في البنود (٣ – ٨) لكل بند أربع اختيارات واحد فقط صحيح ظلل في ورقة الإجابة الرمز الدال على الإجابة الصحيحة


- (۱) اإذا كانت أب قطعة مستقيمة بحيث (3, -3) ، ب(-۲، 3) فإن نقطة تقسيم إب من الداخل من جهة ب بنسبة ٢: ١
- $\begin{pmatrix} \frac{1}{7} \frac{1}{7} \frac{1}{7} \end{pmatrix} \stackrel{\triangle}{\longrightarrow} \begin{pmatrix} \frac{1}{7} \cdot \frac{1}{7} \end{pmatrix} \stackrel{\triangle}{\longrightarrow} \begin{pmatrix} \frac{1}{7} \cdot \frac{1}{7} \frac{1}{7} \end{pmatrix} \stackrel{\triangle}{\longrightarrow} \begin{pmatrix} \frac{1}{7} \cdot \frac{1}{7} \frac{1}{7} \frac{1}{7} \end{pmatrix} \stackrel{\triangle}{\longrightarrow} \begin{pmatrix} \frac{1}{7} \cdot \frac{1}{7} \frac{1}{7}$
 - $\frac{\pi}{2}$ الزاوية التي في الوضع القياسي وقياس زاوية اسنادها $\frac{\pi}{2}$ هي

- °700 (2)
- $\frac{\pi \circ}{\Box}$ $\frac{\pi^{\vee}}{}$
 - $\frac{\pi }{\bar{z}}$
- θ نام الربع الرابع ، فإن ظا θ = θ نقع في الربع الرابع ، فإن ظا 7 $\frac{1}{\sqrt{2}}$

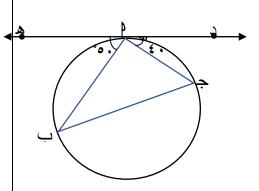

(*, ۲)

(· ,9) (<u>`</u>

- (° '4') (° '4'-) (° '4'-)
- ٦) في الشكل المقابل جد ، ب د مماسان للدائرة فإن س=

- °07 (4)

القسم الأول: القسم المقال (أجب عن جميع الأسئلة موضحاً خطوات الحل)


السؤال الأول:

٩) في الشكل المقابل لدينا:

$$\circ \cdot = (\hat{q} + \hat{q} +$$

- ١) أوجد قياسات زوايا المثلث ١ب جـ
 - ٢) أثبت أن بج قطر للدائرة.

$$\cdot = \frac{1}{\gamma}$$
 – حل المعادلة المثلثية جاس – حل المعادلة المثلثية

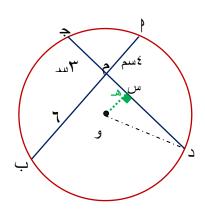
السؤال الثاني:

() حل النظام :

الحل:

(ب) بدون استخدام الآلة الحاسبة إذا كان ظا
$$\theta = \sqrt{7}$$
 ، جا $\theta < 0$ ، أوجد جتا θ ، جا

	الثالث	السؤ ال	
•		استوان	


4) أوجد معادلة المستقيم المار من بالنقطة (١، ٤) والعمودي للمستقيم هـ:
$$7$$
 ص + w + 7 =• الحل:

أ) في فضاء العينة ف لدينا الحدثان β ، ب المتنافيان حيث : $b(\hat{\beta})=7$, ، $b(\mu)=0$, ، أوجد :

السؤال الرابع:

- (ع) في الدائرة المقابلة التي مركزها و: $\overline{q} = 3$ سم ، $\overline{p} = 7$
 - ١) أوجد قيمة س
 - ٢) أوجد البعد بين مركز الدائرة و والوتر دجه إذا علمت أن طول نصف قطر الدائرة يساوي ٧سم.

الحل:

(+) : إذا كانت $\frac{-0}{100}$ قطعة مستقيمة بحيث (-0, 7) ، +(7, -2)

فأوجد نقطة تقسيم $\frac{\overline{}}{}$ من الداخل من جهة α بنسبة α : α

الأسئلة الموضوعية:

(١) إذا كانت العبارة صحيحة أو لا : في البندين (١ – ٢) عبارات ظلل في ورقة الإجابة اذا كانت العبارة خاطئة

المصفوفة $\begin{bmatrix} 1 & 7 & 7 \\ 1 & 1 \end{bmatrix}$ هي نظير الضربي للمصفوفة $\begin{bmatrix} 1 & 7 & 7 \\ 1 & 2 & 1 \end{bmatrix}$

ثانياً: في البنود ($\gamma - \lambda$) لكل بند أربع اختيارات واحد فقط صحيح ظلل في ورقة الإجابة

الرمز الدال على الإجابة الصحيحة

 ٣) في الشكل المقابل إذا كان محيط المثلث يساوي ٦٠ فإن طول إب = (۱۰ سم (← ۳۰ سم (← ۲۰ سم (€ ۱۰ سم

ع) إذا كانت $\frac{1}{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ فإن $\frac{1}{2}$ تساوي

۲) المعادلة m' + m' - 1 m - 1 - m + 7 = 0 تمثل دائرة

 $\theta = (\theta - \frac{\pi}{v}) + \pi$ المقدار : جتا $\theta + \pi$ + جتا $\theta + \pi$

 $^{\vee}$ مركز ونصف قطر الدائرة : س $^{\vee}$ + ص $^{\vee}$ + $^{\vee}$ س $^{\vee}$ - $^{\circ}$

١٠ - ٢ ، ٤) ، نق = ٥

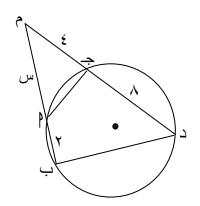
 \circ نق = ۱۰ نق = ۱۰ نق = ۱۰ نق = ۱۰ نق

٦) في الشكل المقابل دائرة مركزها و ، م د مماس

طول جـ هـ = (ج) ۱٥

70 (1)

انتهت الأسئلة



الزمن : (ساعتان ونصف)

... القسم الأول : القسم المقال (أجب عن جميع الأسئلة موضحاً خطوات الحل)

السؤال الأول: (١) في الشكل المقابل احسب س

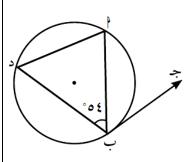
الحل:

 $\overline{}$ حل المعادلة المثلثية $\overline{}$ ظاس $\overline{}$ - $\overline{}$ (ب)

السؤال الثاني:

$$\begin{cases} \gamma & \gamma \\ -1 & \gamma \end{cases} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{$$

$$\theta^{\prime}$$
فا = $\frac{(1+\theta)(\theta)(\theta)}{(\theta)}$ = قا θ = قا θ

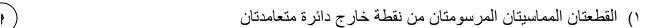

السؤال الثالث:

۱) احسب ل (ب)

٢) أوجد ل(١ أ ب)

٣) احسب لُ (١ س ب)

السؤال الرابع:



(ب) اكتب معادلة الخط المستقيم المار بالنقطتين (٣، ١٠) ، (٢، ٠٢)

- البنود الموضوعية	القسم الثاني
--------------------	--------------

- أولاً: في البنود (١،١) عبارات ظلل في ورقة الإجابة (١)إذا كانت العبارة صحيحة
- (اذا كانت العبارة خاطئة

$$\frac{\pi}{r}$$
 = فإن س = $\frac{1}{r}$ فإن س = $\frac{1}{r}$

ثانياً: في البنود (٣ - ٨) لكل بند أربع اختيارات واحد فقط صحيح ظلل في ورقة الإجابة الرمز الدال على الإجابة الصحيحة

- ليس أي مما سبق
- $\overline{\vee}$
 - V (<u></u>
 - ٢) المعادلة: س٢ + ص٢ ٢س ٢ ص _ ٢ = ٠ تمثل:

() معادلة مستقيم

- Ø 🕒
- ا معادلة دائرة ل نقطة
- اِذا کان ظتاس - ، جاس + ، فإن جتاس +)

- 7:
- ٤) مجموعة حل النظام س+٢ص=١١ ۲س+۳ص=۱۸

 $\{(\sharp - \iota \lnot)\}$

1.

- $\{(7, i)\} (2) \qquad \{(i,7)\} (1) \qquad \{(i,7)\} (1)$

1 A • (i)

- \wedge) في الشكل المقابل إذا كان $\phi = 0$ اسم فأن طول نصف فطر الدائرة يساوي تقريباً
- ت ∘سم (د) ۲٫۱ سم
- اً) ۸سم